Injection Molding Archives - SyBridge Technologies https://sybridge.com/topics/injection-molding/ Bridging the gap between innovation and mass production Tue, 02 Jul 2024 15:11:34 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.2 https://sybridge.com/wp-content/uploads/2023/01/SBTArtboard-1FR-Blue-Ico-80x80.png Injection Molding Archives - SyBridge Technologies https://sybridge.com/topics/injection-molding/ 32 32 Conformal Cooling: Impact By the Numbers https://sybridge.com/conformal-cooling-impact-by-the-numbers/ Mon, 01 Jul 2024 16:29:54 +0000 https://sybridge.com/?p=5937 Forget typical cycle times. We’re pushing the boundaries of conformal cooling.  While traditional approaches deliver reductions, at SyBridge, we see further.  By combining our expertise in 3D printing, mold tooling …

The post Conformal Cooling: Impact By the Numbers appeared first on SyBridge Technologies.

]]>

Forget typical cycle times. We’re pushing the boundaries of conformal cooling.  While traditional approaches deliver reductions, at SyBridge, we see further.  By combining our expertise in 3D printing, mold tooling design, and in-house manufacturing, we engineer conformal cooling solutions that unlock the true potential of this transformative technology. Our unique synergy allows us to not just achieve impressive results, but to truly test the limits of what conformal cooling can accomplish for your product.   

Conformal cooling improves throughput 

SyBridge uses conformal cooling designs–either in retrofitting older tooling or as an initial design element–to enhance cooling efficiency, reduce cycle times, and increase productivity (Figure 1).  

Figure 1. Conformal cooling produced dramatic reductions in cycle times.

In one redesign, after a mold flow simulation revealed hot spots on the tips of the parts, SyBridge experts engineered precision water channels to enhance cooling efficiency. Their unique design focused on cooling the front tip of the part, which enhanced the cooling of the rest of the part. This design change substantially reduced mold-open time. Figure 2 dives deeper into the results of these conformal cooling design enhancements. 

Figure 2. Enhanced cooling focused on simulated hot spots.

It takes experience to design effective conformal cooling 

Additive manufacturing (AM or 3D printing) is an excellent avenue for designing conformal cooling. AM enables intricate and complex structures that closely conform to every shape of the part in a way that–depending on the part geometry and complexity–is not always possible with subtractive manufacturing. During the design phase, long before the part is molded, SyBridge engineers use mold flow simulation, virtual testing, and digital integration to configure and test the conformal cooling capacities.  

Can we help you reduce cycle times? 

As conformal cooling experts, SyBridge engineers know how to help you get the cycle times and efficiencies your product needs. Contact our team to explore how solutions like conformal cooling can improve your injection molding process.

The post Conformal Cooling: Impact By the Numbers appeared first on SyBridge Technologies.

]]>
Conformal Cooling: Impact By the Numbers https://sybridge.com/conformal-cooling-impact-by-the-numbers-2/ Mon, 01 Jul 2024 16:29:54 +0000 https://sybridge.com/conformal-cooling-impact-by-the-numbers-2/ Forget typical cycle times. We’re pushing the boundaries of conformal cooling.  While traditional approaches deliver reductions, at SyBridge, we see further.  By combining our expertise in 3D printing, mold tooling …

The post Conformal Cooling: Impact By the Numbers appeared first on SyBridge Technologies.

]]>

Forget typical cycle times. We’re pushing the boundaries of conformal cooling.  While traditional approaches deliver reductions, at SyBridge, we see further.  By combining our expertise in 3D printing, mold tooling design, and in-house manufacturing, we engineer conformal cooling solutions that unlock the true potential of this transformative technology. Our unique synergy allows us to not just achieve impressive results, but to truly test the limits of what conformal cooling can accomplish for your product.   

Conformal cooling improves throughput 

SyBridge uses conformal cooling designs–either in retrofitting older tooling or as an initial design element–to enhance cooling efficiency, reduce cycle times, and increase productivity (Figure 1).  

Figure 1. Conformal cooling produced dramatic reductions in cycle times.

In one redesign, after a mold flow simulation revealed hot spots on the tips of the parts, SyBridge experts engineered precision water channels to enhance cooling efficiency. Their unique design focused on cooling the front tip of the part, which enhanced the cooling of the rest of the part. This design change substantially reduced mold-open time. Figure 2 dives deeper into the results of these conformal cooling design enhancements. 

Figure 2. Enhanced cooling focused on simulated hot spots.

It takes experience to design effective conformal cooling 

Additive manufacturing (AM or 3D printing) is an excellent avenue for designing conformal cooling. AM enables intricate and complex structures that closely conform to every shape of the part in a way that–depending on the part geometry and complexity–is not always possible with subtractive manufacturing. During the design phase, long before the part is molded, SyBridge engineers use mold flow simulation, virtual testing, and digital integration to configure and test the conformal cooling capacities.  

Can we help you reduce cycle times? 

As conformal cooling experts, SyBridge engineers know how to help you get the cycle times and efficiencies your product needs. Contact our team to explore how solutions like conformal cooling can improve your injection molding process.

The post Conformal Cooling: Impact By the Numbers appeared first on SyBridge Technologies.

]]>
Apprenticeship Program Serves Students and the Tooling Community https://sybridge.com/apprenticeship-program-serves-students-and-tooling-community/ Thu, 20 Jun 2024 19:21:46 +0000 https://sybridge.com/?p=5878 Ron Maillet, General Manager of SyBridge Technologies in Fitchburg, Massachusetts, is an injection molding expert who started as an apprentice nearly forty years ago in Fitchburg, Leominster, Clinton, and surrounding …

The post Apprenticeship Program Serves Students and the Tooling Community appeared first on SyBridge Technologies.

]]>
Fitchburg Apprenticeship Program
From left to right: Brayden Janak (apprentice); Logan Vifaquain (CNC machining, Programming and CMM); Ron Maillet (GM); Jakob Rickan (CNC machining, CNC lathe, Programming and Electrode milling); Jack Carignan (CNC machining, Programming and Apprentice Mold maker)

Ron Maillet, General Manager of SyBridge Technologies in Fitchburg, Massachusetts, is an injection molding expert who started as an apprentice nearly forty years ago in Fitchburg, Leominster, Clinton, and surrounding areas. 

For the past twenty-four years, Maillet has been working in the same building, in many roles and increasing responsibilities, and even through ownership changes. Now in the leadership role at SyBridge Technologies-Fitchburg, he helps oversee a well-established apprenticeship program with students from Montachusett Regional Vocational Technical School (“Monty Tech”) to learn the art, science, and craft of mold-making. 

“It’s fitting that this area would be home to a thriving apprenticeship program in plastics and mold-making,” said Maillet. “One hundred years ago, Foster Manufacturing – famous for Foster Grant glasses – pioneered plastics and injection molding five miles away in Leominster,” said Maillet. The industry has had a presence here ever since.  

SyBridge Technologies in Fitchburg has partnered with Monty Tech for seven years, bringing students into apprenticeship programs and then on into full employment. All the students that have started as apprentices under Maillet are either still in apprenticeship or are now employed by SyBridge, a testament to the staying power of the training and the industry. 

Kim Curry, Coordinator of Co-operative Education and Placement for Monty Tech, explained the breadth of the apprenticeship program. Monty Tech serves 18 cities and towns in the area and offers 21 vocational programs, including “Advanced Manufacturing.”  For a student to be considered for the co-operative education program, the student must be a junior, maintain grades of 75 or better, and be free of any discipline issues. The co-operative education program has seen a steady growth in interest from students since 2018. 

“It’s been a great partnership between SyBridge and Monty Tech,” said Curry. “When I do site visits there, I see my former students in mentorship and supervisor roles—and it is such a delight!” 

First comes the blueprint 

Every SyBridge apprentice starts in the same way Maillet began: reading a blueprint. From the blueprint, they sort out the cuts and angles, note the dimensions and tolerances, and then schedule the order of each process. The apprentice then moves to a manual milling machine, where they install the tools, calculate cutting speeds, and make their first test cuts.  

“I started reading blueprints,” said Jake Rickan, a 2023 graduate from Monty Tech who recently signed on as an employee of SyBridge. Rickan became interested in tool design and machine tech during his exploratory section in school, where he learned about different functional areas. He had been tinkering with after-market car parts, which involved machining, and the work of the apprenticeship program “caught his eye.” 

“I had always been infatuated with machining,” said Jake. His parents were both educators, but for Jake, machine technology and the finished, machined piece of steel has its own appeal. “It’s very cool to see the finished piece and be like, ‘Hey, I’m the one who did that,’” said Rickan. 

Step by step through the apprenticeship 

“Once they show us they’ve [mastered a particular skill], then we move them on to the next stage,” said Maillet, “For instance, after showing they can run the manual machines, we move them to milling equipment with numerical controls. Then they start programming with computers; using 3D files created by our engineers, they start actually cutting steel.” Eventually, they get to the 16-tool changer and the higher-end work. And then on to another department. 

Along the way, apprentices meet with both the experienced staff at SyBridge and with Monty Tech faculty to review expectations. Each step of advancement through the apprenticeship comes only after demonstrating the ability to perform previous steps.  

“Students record each of the skills they learn every day,” said Maillet. Those records become a valuable reference document throughout their journeys as apprentices, and as they move into full-time employment. 

The Monty Tech/SyBridge apprenticeship program enrolls one student per year. The program alternates weeks students spend attending school and working at SyBridge, so skills can be reinforced in both the apprenticeship program and classes. 

“It’s cool to be able to come to the workplace and say, ‘Oh, what they’re teaching us [at school] is actually very useful,’” said Rickan.  

Learning outside the lecture hall 

One of the highlights of the apprenticeship program is that former students pass on the skills and habits they have learned to newer students. Students share the tacit knowledge they pick up from experienced mold-makers and machinists, like securing workpieces, locating the zero point (starting position) on the workpiece, and keeping their work area very clean. This is especially important for the precision work that SyBridge is known for; starting with a clean mill ensures debris from previous jobs will not alter tolerances for the next job. 

“We have a very strong emphasis on making sure the part [in process] falls within certain tolerances,” said Rickan. In addition to setting up the workspace properly and having the specialized equipment required for precise tolerances, “we need to know how to get the part within those tolerances.” 

Toward expertise that invents tomorrow’s tooling  

Maillet likes to say that while most people divide an inch into quarters, eighths, and sixteenths, he and the highly specialized journeymen machinists at SyBridge divide an inch into 10,000 sections.  Here, tools are regularly manufactured with .0002” tolerances (as compared to a standard sheet of printer paper which is about 20 times thicker at .004”). Observing and maintaining tolerances is critical to any machined part moving forward. That ability to work with very tight tolerances is an uncommon one; it’s also why the new apprentice enters the program only after being vetted by Monty Tech staff and instructors. Throughout their program, class subjects dovetail with real-world experience at SyBridge to reinforce skills that will prove useful over a lifetime.  

Training students with experienced machinists has proven to be very productive for Maillet. Maillet noted that when he ran an ad for an experienced machinist, “90% of people don’t even know what a machinist is.” Meanwhile, Monty Tech (which is half a mile from SyBridge) has 25 potential students who are already interested and poised to learn new machinist skills. The bottom line is that Maillet can train and then hire experienced workers right into his shop —resulting in a scenario that benefits the students and the company.  

“As an industry, we are actually in a time of rebuilding our skills here in the US,” said Maillet. “Tooling and mold-making were strong in the 1980s and 1990s, but then moved offshore for a lot of years.” After COVID-19 and the renewed focus on supply chain management, Maillet noted that interest in skilled mold and tool making had surged.  

Rebuilding the craft of injection mold tooling means students remain in the community, earn a good salary, and help advance the art and science of mold-making. 

The post Apprenticeship Program Serves Students and the Tooling Community appeared first on SyBridge Technologies.

]]>
SyBridge Technologies Launches SyBridge Studio, an Innovative Application, on the PTC Onshape App Store https://sybridge.com/sybridge-launshes-studio-on-the-onshape-app-store/ Mon, 10 Jun 2024 22:08:41 +0000 https://sybridge.com/ai-powered-dfm-analysis-by-sybridge-now-available-in-the-onshape-app-store/ –New App Empowers Engineers and Designers to Validate Manufacturability, Optimize Designs, and Accelerate Speed to Market– –Leverages Proprietary Artificial Intelligence (AI) Algorithms– ITASCA, Ill., June 10, 2024 /PRNewswire/ — SyBridge Technologies, a …

The post SyBridge Technologies Launches SyBridge Studio, an Innovative Application, on the PTC Onshape App Store appeared first on SyBridge Technologies.

]]>
–New App Empowers Engineers and Designers to Validate Manufacturability, Optimize Designs, and Accelerate Speed to Market–

–Leverages Proprietary Artificial Intelligence (AI) Algorithms–

ITASCA, Ill., June 10, 2024 /PRNewswire/ — SyBridge Technologies, a global leader in design and manufacturing solutions, today announced the launch of SyBridge Studio, a state-of-the-art manufacturing insights application, now available on the PTC Onshape® App Store.

This advanced tool integrates a comprehensive suite of design for manufacturability (DFM) features, drawing upon SyBridge’s extensive expertise in injection mold tooling and production-grade additive manufacturing. Leveraging state-of-the-art logic and data-driven artificial intelligence (AI) algorithms built on a vast database of manufactured parts and tools, the application provides users with unparalleled insights to optimize designs early, assess production tradeoffs, and achieve superior results in cost, speed, and quality.

SyBridge is a portfolio company of Crestview Partners, a leading private equity firm with approximately $10 billion of aggregate capital commitments.

SyBridge’s new application integrates directly into Onshape, the industry’s foremost cloud-native CAD software, providing a powerful extension to the existing toolset available to Onshape users. The app’s user-friendly interface and robust features offer a significant enhancement to the design process, enabling engineers to produce high-quality, manufacturable designs efficiently.

Key Features of the SyBridge Studio include:

  • Automated Design for Manufacturability (DFM) Checks: Quickly understand manufacturing issues and how to mitigate them with 80+ Design for Manufacturability (DFM) checks across manufacturing processes: injection molding, CNC machining, and multiple 3D printing technologies.
  • Injection Mold Action & Insert Identification: Visualize parting directions and automatically identify various common tooling actions like slides, pins, inserts, lifters, bosses, and strippers.
  • Part Thickness Analysis: Visualize material distribution with a full-field colored heatmap on your part CAD to easily identify thin, thick, or non-uniform walls that could cause manufacturing quality issues like warpage or sink marks.

In addition to these powerful features, SyBridge is actively developing future enhancements to the application’s capabilities with a comprehensive roadmap including cost insights and analysis tools, a material recommendation engine, and the ability to purchase parts directly from Onshape via SyBridge On-Demand.

“Going from an industrial design to physical parts is a time consuming processes, typically requiring multiple iterations between different technical domains. With the launch of SyBride Studio, we are excited to provide designers and engineers with a tool that not only makes this process easier and more efficient, but works directly in their CAD environment,” said Byron J. Paul, CEO of SyBridge Technologies. “Our application’s integration with Onshape underscores our commitment to delivering innovative solutions that seamlessly integrate into our customers’ existing workflows to help simplify and accelerate the design and manufacturing process.”

“We are thrilled to welcome this app to the Onshape App Store,” said Jon Hirschtick, Co-Founder and Chief Evangelist of Onshape. “This app provides our users with invaluable tools to get feedback as they are designing, ultimately helping them to achieve their business goals more effectively.”

Onshape users can easily access and install the new application directly from the Onshape App Store, enabling them to quickly take advantage of its powerful features. For more information about SyBridge Studio and to download it, please visit the Onshape App Store.

About SyBridge Technologies

SyBridge Technologies is the global leader in technology-enabled design, prototyping and manufacturing solutions for complex, high-precision parts. Its mission is to use technology to simplify and accelerate how parts are designed and manufactured. SyBridge is one of North America’s largest injection molding tooling platforms and the largest private on-demand digital manufacturer. Our AI/ML technology platform is supported by an industry-leading team of software engineers, computational geometry experts and data scientists.  SyBridge Technologies is backed by Crestview Partners and comprises 15 acquisitions that bring together different products, services, and technologies into a unified technology-enabled platform. SyBridge is headquartered in Itasca, Illinois and operates through 18 locations across North America, Europe, and Asia. For more information, please visit www.SyBridge.com.

About PTC (NASDAQ: PTC)

PTC (NASDAQ: PTC) is a global software company that enables industrial and manufacturing companies to digitally transform how they engineer, manufacture, and service the physical products that the world relies on. Headquartered in Boston, Massachusetts, PTC employs over 7,000 people and supports more than 25,000 customers globally. For more information, please visit www.ptc.com.
PTC.com            @PTC            Blogs

PTC, Onshape, and the PTC logo are trademarks or registered trademarks of PTC Inc. or its subsidiaries in the United States and other countries.

SyBridge Media Contact:
Jeffrey Taufield or Jennings Brooks
Kekst CNC
(212) 521-4800
jeffrey.taufield@kekstcnc.com / jennings.brooks@kekstcnc.com

PTC Media Contact:
Greg Payne
Corporate Communications
gpayne@ptc.com

The post SyBridge Technologies Launches SyBridge Studio, an Innovative Application, on the PTC Onshape App Store appeared first on SyBridge Technologies.

]]>
AI-Powered DFM Analysis by SyBridge, Now Available in the Onshape App Store  https://sybridge.com/dfm-analysis-sybridge-onshape-app-store/ Sat, 08 Jun 2024 17:45:57 +0000 https://sybridge.com/how-to-make-data-work-for-mold-productivity-and-performance-2/ Designing a product is just the beginning. The real challenge lies in ensuring your design is manufacturable, cost-effective, and meets your quality standards. Waiting for design feedback, navigating last-minute design …

The post AI-Powered DFM Analysis by SyBridge, Now Available in the Onshape App Store  appeared first on SyBridge Technologies.

]]>

Designing a product is just the beginning. The real challenge lies in ensuring your design is manufacturable, cost-effective, and meets your quality standards. Waiting for design feedback, navigating last-minute design changes, and dealing with manufacturing issues can make this journey feel like an uphill battle. But there’s a solution to make this process smoother and more efficient. 

We’re excited to introduce the SyBridge Studio App, a powerful new tool now available in the Onshape App Store. Developed by leading global manufacturer SyBridge Technologies, the app brings the existing features of SyBridge Studio directly into Onshape. Leveraging insights from millions of parts and tools made combined with the power of artificial intelligence, it codifies a century of manufacturing knowledge to provide you with expert guidance at your fingertips. Easily confirm manufacturability, understand trade-offs, and optimize your design, all while meeting your goals for cost, speed, and quality. 

Manufacturing insights at your fingertips 

Manufacturing insights at your fingertips 

After subscribing to the app, you’ll instantly get access to the following features: 

Automated Design Feedback – Quickly find ways to improve part design and reduce costs with manufacturing recommendations. Get feedback on draft angles, non-standard holes, supported surfaces, surface imperfections, and more. Understand how to mitigate potential manufacturing risks with a collective 80+ Design for Manufacturability (DFM) checks available across six manufacturing processes: injection molding, CNC machining, and four 3D printing processes (DLS, FDM, MJF and SLA). 

Injection Mold Action & Insert Identification – See where your tooling requires actions such as slides, pins, inserts, lifters, bosses, or strippers. Use this to make informed design modifications that minimize witness marks and enhance the aesthetic quality of your part. Identify opportunities to reduce tooling complexity and costs, streamlining the manufacturing process and improving overall efficiency. 

Part Thickness Analysis – Visualize the material distribution in your part with a full-field colored heatmap to easily identify thin or thick wall issues. Maintaining consistent wall thickness ensures uniform cooling, minimizes warping, and enhances part strength, durability, and aesthetic quality. Use this analysis to make informed design modifications that improve part quality and reduce costs by normalizing wall thickness throughout your design, resulting in a more efficient and effective manufacturing process. 

More features in an expanded view – SyBridge Studio’s Onshape extension currently houses the most important features, but even more are available on the SyBridge Digital Platform, including instant quoting, parts ordering, and additional analysis tools. Log in here using the same email used to sign in to the SyBridge Studio Onshape app to continue working in a more immersive, full-screen view. 

And more coming soon

cost insights

More advanced features to help you design more effectively and bridge the gaps between design and manufacturing are on the way, including: 

Instant pricing and cost insights – Receive estimated part and tool pricing at various quantities, access cost-saving design recommendations, understand cost breakdowns, and view other key cost drivers (e.g., cycle time) for 6 manufacturing processes. 

Purchase parts – Easily place an order for your part when you’re ready to check out, directly inside Onshape.  

Recommended and customizable manufacturing orientation – Use our recommended manufacturing direction or adjust it based on aesthetic requirements. Easily visualize and understand the impact on design recommendations and tooling requirements. 

Injection molding tool visualization – View a mock-up of the mold core and cavity to get a sneak peek at how your tool will be made. 

Additional insights – Intelligent systems meet intelligent design. Stay tuned for more insights coming your way: material insights, more advanced DFM checks, and additional injection molding guidance. 

Assembly support – The SyBridge Studio app currently analyzes individual components that you select. Next up is support for full BOMs/assemblies. 

Elevate your design process today 

The SyBridge Studio App is here to change the way you approach design and manufacturing. By integrating advanced manufacturability analysis and optimization tools directly into your Onshape workflow, this app aims to help you overcome common challenges and achieve your design goals more efficiently. 

Ready to take your design process to the next level? Head to the Onshape App Store and subscribe to the app today to experience firsthand how this powerful tool can transform your workflow and bring your designs to life with greater ease and precision. 

The post AI-Powered DFM Analysis by SyBridge, Now Available in the Onshape App Store  appeared first on SyBridge Technologies.

]]>
How to Make Data Work for Mold Productivity and Performance https://sybridge.com/how-to-make-data-work-for-mold-productivity-and-performance/ Thu, 23 May 2024 15:14:13 +0000 https://sybridge.com/?p=5792 Today, designers and engineers are accustomed to working with digital tools in their day-to-day jobs. Yet, over the last decade, these tools have evolved and unlocked new capabilities and productivity …

The post How to Make Data Work for Mold Productivity and Performance appeared first on SyBridge Technologies.

]]>
Today, designers and engineers are accustomed to working with digital tools in their day-to-day jobs. Yet, over the last decade, these tools have evolved and unlocked new capabilities and productivity gains, enabling part and injection mold designs to be more complex and data-driven. However, a central challenge in manufacturing lies in the scattered nature of data that exists across the product lifecycle. From design and moldmaking to manufacturing and quality control, valuable data is generated in silos, hindering seamless collaboration. 

Get the full article at MoldMaking Technology

The post How to Make Data Work for Mold Productivity and Performance appeared first on SyBridge Technologies.

]]>
Optimizing Your Injection Molding Process for Cost-Effective Manufacturing Excellence https://sybridge.com/optimizing-your-injection-molding-process/ Tue, 30 Apr 2024 13:33:10 +0000 https://sybridge.com/tackling-football-head-injuries-with-manufacturing-innovation-2/ In today’s competitive landscape, manufacturers are constantly seeking ways to streamline their processes, reduce costs, and increase output. At SyBridge, we understand these challenges and are dedicated to partnering with …

The post Optimizing Your Injection Molding Process for Cost-Effective Manufacturing Excellence appeared first on SyBridge Technologies.

]]>
Injection Molding

Optimizing Your Injection Molding Process for Cost-Effective Manufacturing Excellence

In today’s competitive landscape, manufacturers are constantly seeking ways to streamline their processes, reduce costs, and increase output. At SyBridge, we understand these challenges and are dedicated to partnering with you to achieve your manufacturing goals.

Our expertise in design, engineering, and tooling for injection molding goes beyond simply creating high-quality molds. We are your strategic partner, offering expert guidance to optimize your entire process, resulting in measurable improvements to your bottom line.

Optimizing a Pail Mold for Increased Efficiency and Cost Saving

A recent collaboration with a client perfectly exemplifies the value SyBridge brings to the table. We were tasked with re-engineering an existing pail mold. The original design presented several challenges, including:

  • Average cycle times: The initial cycle time was 20 seconds, limiting overall production output.
  • Limited output: The mold could produce 1 million parts per year; however, growing demand required additional output.

SyBridge’s Expertise Delivers Remarkable Results:

Our team of engineers meticulously analyzed the existing mold and identified optimization opportunities. By leveraging our expertise in precision tooling and complex high-cavitation tools, we were able to:

  • Reduce cycle time by 15% (3 seconds):
    This seemingly small improvement translates to significant production volume increase over time.
  • Increase output by over 30%:
    The new design allows for the production of 1,350,000 parts per year, exceeding the client’s initial requirements.
  • Consolidate production:
    The optimized mold’s increased efficiency enabled the client to manufacture at the same rate as four presses while using only three, eliminating the need for additional equipment and tooling costs.

The post Optimizing Your Injection Molding Process for Cost-Effective Manufacturing Excellence appeared first on SyBridge Technologies.

]]>
How SyBridge Expertise Optimizes Your Process and Lowers Costs https://sybridge.com/how-sybridge-expertise-optimizes-your-process-and-lowers-costs/ Thu, 11 Apr 2024 16:59:58 +0000 https://sybridge.com/how-sybridge-expertise-optimizes-your-process-and-lowers-costs/ In the fast-paced world of manufacturing, efficiency is paramount. Every second shaved off a cycle time translates directly to higher profits and a competitive edge. And when it comes to …

The post How SyBridge Expertise Optimizes Your Process and Lowers Costs appeared first on SyBridge Technologies.

]]>

How SyBridge Expertise Optimizes Your Process and Lowers Costs

In the fast-paced world of manufacturing, efficiency is paramount. Every second shaved off a cycle time translates directly to higher profits and a competitive edge. And when it comes to injection molding, tooling design is often the foundation upon which everything rests. At SyBridge, we understand this, and it’s why we’ve become the industry leader in design, engineering, and manufacturing of injection mold tooling.

Our expertise goes beyond simply creating high-quality tools. We are experts in optimization, and our dedication to understanding your specific needs allows us to craft solutions that streamline your entire injection molding process.

Supercharging Production

One client, a manufacturer of plastic dosing scoops, faced a common challenge: production couldn’t keep up with demand. They were running four 175-ton injection molding machines 24/7. Each existing 12-cavity tool had a 9.5-second cycle time and produced 110,000 parts per day, but it simply wasn’t enough.

Phase 1

SyBridge engineers evaluated the customer’s existing equipment, systems, and output needs, then designed a new 12-cavity tool using innovative solutions for filling and cooling the component. Upon installation, they realized a remarkable 5.0-second cycle time, a 47% reduction from their previous 9.5-second cycle time. This translated into an 88% increase in daily production with the same machine, producing an impressive 207,000 parts per day.

Phase 2

But SyBridge didn’t stop there. Building on this success, we engineered another tool, this time with 16 cavities; as before, the cycle time was at 5-seconds, and the higher-cavitation tool was still able to run in the same 175-ton presses. This powerhouse pushed daily production even further, reaching 275,000 parts – a 150% increase from the original tool.

The Proof is in the ROI

The impact was undeniable. The manufacturer not only met demand but was also able to get ahead of it, opening up opportunities for new sales growth. SyBridge tooling solutions delivered such significant production gains that the customer was able to recoup their tooling investment in less than 6 months, a testament to the immediate value delivered by SyBridge expertise. But even beyond the initial investment payback, with the increased output, the customer was able to better schedule planned maintenance, extending the life of the tools and leading to additional long-term financial benefits. This is just one example of how SyBridge empowers our partners to achieve remarkable results. Our commitment to precision engineering, coupled with our in-depth understanding of the injection molding process, allows us to:

  • Reduce cycle times through innovative tool design, leading to greater output and increased production efficiency.
  • Lower your Total Cost of Ownership (TCO) through more efficient tooling that drives lower direct and indirect material costs for molded products.
SyBridge

The post How SyBridge Expertise Optimizes Your Process and Lowers Costs appeared first on SyBridge Technologies.

]]>
7‌ ‌Common‌ ‌Injection‌ ‌Molding‌ ‌Defects‌ ‌and‌ ‌How‌ ‌to‌ ‌Avoid‌ ‌Them‌ https://sybridge.com/injection-molding-defects/ Thu, 18 Jan 2024 16:41:00 +0000 https://sybridge.com/?p=3226 Injection molding is an efficient production method when high volumes of identical parts are needed. However, it also requires a high degree of technical expertise to master. With so many different …

The post 7‌ ‌Common‌ ‌Injection‌ ‌Molding‌ ‌Defects‌ ‌and‌ ‌How‌ ‌to‌ ‌Avoid‌ ‌Them‌ appeared first on SyBridge Technologies.

]]>
Injection molding is an efficient production method when high volumes of identical parts are needed. However, it also requires a high degree of technical expertise to master. With so many different variables in play, small, seemingly minor mistakes in early phases of product development can lead to major problems — and even compromise product integrity — down the line.

Defects can reduce the speed and cost-efficiency of the entire product development process, and can potentially shorten product life spans if left unchecked. Injection molding issues and defects can be caused by a host of reasons, including poor design, production process mistakes, quality control failures, and more. As such, it’s important to take a proactive approach to risk mitigation throughout the product development process so as to reduce the chances of potential injection molding defects.

Here are a few of the most common defects that may occur in plastic injection molding — and how product teams can avoid them.

1. Flow Lines

Flow lines are off-color lines, streaks, and other patterns that appear on the surface of a part. These are caused by the shot of molten plastic moving at different speeds throughout the injection mold, which ultimately causes the resin to solidify at different rates. This is often a sign that injection speed and/or pressure are too low.

Flow lines can also appear when the thermoplastic resin moves through parts of the mold with different wall thicknesses — which is why maintaining consistent wall thickness or ensuring that chamfers and fillets are an appropriate length is critical. Placing the gate in a thin-walled section of the tool cavity can further help to reduce flow lines.

2. Sink Marks

Sink marks appear as depressions, dents, or craters in thick sections of a part. Thicker sections take longer to cool, which can have the often unanticipated side effect of the inner portions of the part shrinking and contracting at a much different rate than the outer sections.

Example of sink marks

Though most often an indicator that the plastic needs more time inside the mold to properly cool and cure, sink marks may sometimes be remedied by reducing the thickness of the thickest wall sections, which helps to ensure more even and thorough cooling. Inadequate pressure in the mold cavity or higher-than-desirable temperatures at the gate can also contribute to the development of the defects.

On the design side, the risk of sink marks can be minimized by ensuring proper injection molding rib thickness and wall thickness. These actions can also help to increase the overall strength of the part.

3. Surface Delamination

What is delamination? Delamination is a condition that causes a part’s surface to separate into thin layers. These layers, which appear like coatings that can be peeled off, are caused by the presence of contaminants in the material that do not bond with the plastic, creating localized faults. An over-dependence on mold release agents can also cause delamination.

Examples of surface delamination

To encourage delamination repair and prevention, teams should increase mold temperatures and tailor the mold ejection mechanism to be less dependent on mold-release agents, since these agents can increase the risk of delamination. Properly pre-drying the plastic before molding can also help.

4. Weld Lines

Also called knit lines, these defects mark where two flows of molten resin came together as they moved through the mold geometry. This happens around any part of the geometry that has a hole. As the plastic flows and wraps around each side of a hole, the two flows of plastic meet. If the temperature of the flow isn’t just right, the two flows won’t properly bond together and will instead cause a visible weld line. This reduces the overall strength and durability of the component.

Examples of weld lines

Raising the temperature of the molten resin can help to prevent the solidification process from beginning too soon, as can increasing injection speed and pressure. Resins with lower viscosity and lower melting points are less prone to developing weld lines in injection molding, which can also be eliminated by removing partitions from mold design.

5. Short Shots

“Short shots” refer to instances in which the resin doesn’t entirely fill the mold cavity, resulting in incomplete and unusable parts.

What causes short shots in injection molding? Typically, they are the result of restricted flow within the mold, which can be caused by gates that are too narrow or have become blocked, trapped air pockets, or insufficient injection pressure. Material viscosity and mold temperature are also contributors. Increasing mold temperature and incorporating additional venting into mold design to allow air to properly escape can help prevent the occurrence of short shots.

6. Warping

Injection molding warping refers to unintended twists or bends caused by uneven internal shrinkage during the cooling process. Warping defects in injection molding are generally the result of non-uniform or inconsistent mold cooling, which creates stresses within the material.

Preventing warpage defects in injection molding is a matter of guaranteeing that parts are given enough time to cool — and at a sufficiently gradual rate — to prevent internal stresses from forming and damaging the piece. Uniform wall thickness in mold design is crucial for many reasons, critical among them being that it helps ensure that the plastic flows through the mold cavity in a single direction.

It’s worth noting that materials with semi-crystalline structures are more likely to develop warping.

7. Jetting

Jetting defects in injection molding are another potential result of an uneven solidification process. Jetting occurs when an initial jet of resin enters the mold and has enough time to begin setting before the cavity fills. This creates visible, squiggly flow patterns on the piece’s surface and decreases the strength of the part.

Example of jetting

Reducing injection pressure is often the best way to ensure more gradual fills, but increasing the mold and resin temperature can also help to prevent any jets from preemptively setting. Placing the injection gate so that the flow of material runs through the shortest axis of the mold is another effective means of minimizing jetting.

Prevent Injection Molding Defects and Causes

Injection molding can be a highly efficient manufacturing method for producing highly repeatable plastic parts, but, as with many processes, producing high quality end-parts requires a high level of attention to detail and a proactive approach to risk management. Everyone involved in the product development process — from the initial design and proof-of-concept stages all the way to fulfillment — needs to do their due diligence to ensure products meet the highest quality standards and avoid these common plastic injection molding issues.

Choosing a manufacturing partner like SyBridge, who is well-versed in common defects in injection molding and their troubleshooting, can mean the difference between high-quality parts — produced on-time and within budget — and those marked with weld lines, jet, flash, sink marks, and other defects. In addition to being an experienced on-demand manufacturing shop, we also provide design consulting and optimization services that ensure we’re able to help every team create functional, elegant, high-performance parts as efficiently as possible. Contact us today to learn more about our injection molding services.

The post 7‌ ‌Common‌ ‌Injection‌ ‌Molding‌ ‌Defects‌ ‌and‌ ‌How‌ ‌to‌ ‌Avoid‌ ‌Them‌ appeared first on SyBridge Technologies.

]]>
The Digital Thread: End-to-End Data-Driven Manufacturing https://sybridge.com/digital-thread-enhancing-manufacturing-intelligence/ Fri, 17 Nov 2023 01:40:10 +0000 https://sybridge.com/?p=3788 by Charlie Wood, Ph.D.VP of Innovation, Research & Development As a part of the SyBridge team, I’ve witnessed the remarkable evolution of design and engineering tools over the past decade. …

The post The Digital Thread: End-to-End Data-Driven Manufacturing appeared first on SyBridge Technologies.

]]>
#genesis-content > article > div > div.entry-content.entry-content-single > div > div > p > a { color: #069ed6 !important; }

by Charlie Wood, Ph.D.
VP of Innovation, Research & Development

As a part of the SyBridge team, I’ve witnessed the remarkable evolution of design and engineering tools over the past decade. These digital advancements have revolutionized our approach to manufacturing, allowing for more data-driven processes and insights. But it can be difficult to know where to start, or even to understand where there are opportunities to implement.

At the heart of our approach lies the concept of the “Digital Thread,” a framework that interconnects data across the entire lifecycle. This concept enables us to leverage the wealth of design and operational data across our data lake that is generated in the manufacturing process, from CAD designs to inspection results. While the industry is still moving towards seamless integration, we’ve made significant strides in creating workflows that prioritize data-driven decision-making.

Streamlining Injection Mold Design Workflows


One key area where data is contributing to efficiencies within manufacturing is that of injection mold tooling design. By utilizing virtual component libraries for mold designs, we’ve been able to streamline the complex process of coordinating and collaborating on intricate assemblies for mold making. In these libraries, we have standard blocks, system approaches and components stored in a way that allows us to quickly identify and digitally pull components. This approach offers lots of flexibility when it comes to customer requests and needs, all while keeping standard practices built right into our tools. Over the course of many years, we’ve built software-driven processes to design new builds based off of these standard components, allowing us to quickly handle new requests from customers and build a learning feedback loop to avoid costly mistakes.

Additionally, through the use of parametric component libraries, we’ve been able to significantly reduce design complexity and incorporate our own manufacturing intelligence into these components, allowing us to directly check for design issues and integrate manufacturing information into CAD files. This process creates a flow of information from the conceptual stage of the design through manufacturing and approval, extending our Digital Thread from end to end. This information flow can also go backwards, tying quoting, estimation assumptions and specifications directly to tool designs. These advancements in our design approach have not only made the job of a tool designer a bit easier, but have improved quality by creating
more explicit feedback loops in our design processes.

Innovations in Conformal Cooling

As many know, 3D printing has unlocked incredible design freedom for manufacturing engineers around the world. However, what can be overlooked is how impactful it has been for system designers, like toolmakers, who can utilize that design freedom and low cost of complexity to create components that radically improve performance. In the case of toolmaking, 3D printing has unlocked new cooling channel designs simply not possible before.

Conformal cooling

Although increasing numbers of toolmakers are using these advanced manufacturing techniques today, the new design space is so complex it can be hard to probe. In the past, conformal cooling channels were fairly straight, in-plane paths driven by tool access limitations in machining. With metal 3D printing, the limits are far less restrictive and allow designers to pursue more creative and complicated structures.

Using advanced data-driven methods with virtual design and testing capabilities, we’ve been able to uncover non-obvious opportunity areas in the design space. Through these novel design and
manufacturing workflows, we’re optimizing cooling performance and achieving remarkable improvements in tool performance as measured through cycle time. Through our approach, we’re seeing cycle time reductions as high as 50%. These successes have inspired us to further integrate and enhance these workflows, driving continued innovation.

AI Tools for Manufacturing

DFM Checks

The Fast Radius Portal’s AI-powered DFM checks

Looking ahead, we’re enthusiastic about the possibilities that emerging technologies like machine learning (ML) and artificial intelligence (AI) offer. These novel data modeling approaches have shown incredible potential, and the pace of technological advancement is rapidly accelerating. We’ve been able to use ML models to build data models faster than through simple bottom-up logic, particularly for complex problems that contain many correlating factors.

The critical ingredient in implementing AI for manufacturing are large data sets that provide a source of truth for model training and validation. By leveraging our existing datasets, we aim to predict defects, optimize designs in real-time and ultimately revolutionize quality control processes. These technologies are not a distant vision; they’re an integral part of our current digital platform, with features like instant quoting and DFM checks based on captured manufacturing data. And this is just the beginning of what’s possible.

Unlocking Manufacturing Innovation via the Digital Thread

Our journey in harnessing digital workflows for injection molding design has seen remarkable progress and tangible results. The end-to-end integration of data into the Digital Thread, combined with the power of ML and AI, holds the key to unlocking even greater innovation. As we continue to push boundaries and explore new frontiers, we’re excited about the advancements at the interface between the physical and digital worlds.

Are you ready to harness the power of the Digital Thread for your organization? Contact us today to get started.

The post The Digital Thread: End-to-End Data-Driven Manufacturing appeared first on SyBridge Technologies.

]]>